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The Statistical Error of Green's Function 
Monte Carlo 

D. M. Ceperley ~ 

The statistical error in the ground state energy as calculated by Green's 
Function Monte Carlo (GFMC) is analyzed and a simple approximate formula 
is derived which relates the error to the number of steps of the random walk, the 
variational energy of the trial function, and the time step of the random walk. 
Using this formula it is argued that as the thermodynamic limit is approached 
with N identical molecules, the computer time needed to reach a given error per 
molecule increases as N ~ where 0.5 < b < 1,5 and as the nuclear charge Z of a 
system is increased the computer time necessary to reach a given error grows as 
Z 55. Thus G F M C  simulations will be most useful for calculating the properties 
of low Z elements. The implications for choosing the optimal trial function from 
a series of trial functions is also discussed. 

KEY WORDS:  Quantum Monte Carlo; simulations; variance reduction; 
ground state energy. 

1. I N T R O D U C T I O N  

As other contributions to the Metropolis symposium can attest, quantum 
Monte Carlo methods are having a large impact on many areas of physics 
but they are still very much in the development phase. This contribution 
will be concerned only with Green's Function Monte Carlo (GFMC), a 
method for determining ground state properties of many-body quantum 
systems which is based on an old idea, attributed orginally to Fermi (t) of 
regarding the Schr6edinger equation in imaginary time as a diffusion and 
branching process. After some preliminary research on quantum Monte 
Carlo in the early 1950's, very little progress was made until Kalos (2) 
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applied some of the techniques from neutron transport Monte Carlo: 
importance sampling and iterated Green's functions. The first major 
application of the method, which is now called Green's Function Monte 
Carlo (GFMC), was by Kalos, Levesque, and Verlet (3) who calculated the 
exact ground state energy of approximately 100 hard spheres at densities 
near melting. This was followed by extensive simulations of zero tem- 
perature helium (4~ which were invery good agreement with experiment. 
The GFMC method was then generalized to treat fermion systems. (5) These 
techniques go by the names of the fixed-node, release-node, and transient 
estimate methods and have been used to study the electron gas, (5) liquid 
3He,~6~ molecular and metallic hydrogen,~7~ and molecules consisting of low 
Z elements. (8'9) 

This article does not discuss the technical details of the construction of 
a GFMC program, nor does it discuss any of the results obtained with this 
method. Rather it focuses on the statistical error of the energy as computed 
by the GFMC method. After an approximate formula has been derived, it 
will then be possible to estimate how many random walk steps will be 
needed to reach a prescribed accuracy for a given system, assuming that 
the accuracy of the importance functions is known. Thus, one may be able 
to determine in advance what sort of problems are amenable to GFMC 
calculations, something which before could only be determined after the 
fact. This will also give us an opportunity to explain some of the possible 
improvements to GFMC which could allow it to be used for a wider class 
of problems. 

2. GREEN'S FUNCTION M O N T E  CARLO 

This section introduces the basic procedure of GFMC insofar as it is 
needed for the discussion of the statistical errors. The reader is referred to 
other papers for a detailed description of the algorithm. ~ Let R denote 
a point in the 3N-dimensional configuration space where N is the number 
of particles, and let H be the nonrelativistic Hamiltonian with ~b and Eo 
being the ground state eigenvalue and eigenfunction. The process begins 
with a set of points {Ri}(1 < i<  P1) sampled from some initial probability 
distribution f~(R). This set of points is referred to as the first generation 
and P~ is the population of the first generation (typically 100 to 10,000 
points are used). From each point R~ a number W (hereafter called the 
branching factor) of new points R; are sampled from the Green's function, 
G, written in operator notation as 

G(R', R)= (R'I ~b[-1 + t(H-Er)]-~ ~-~ JR) (1) 
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Here ~, is the trial function which plays a very important role, ET is the 
trial energy, and t is the time step. These points, R;, will be referred to as 
the descendants of Ri and, since the Green's function G is not normalized, 
the number of descendants of Ri (i.e., the branching factor) is not always 
one. Thus, the population in the second generation, P2, can be different 
from P1. According to (1), the distribution of points in the second 
generation is a sample from the function 

f2(R) = f  dR' G(R, R') f l (R')  (2) 

The process of sampling the Green's function G is based on the von 
Neumann-Ulam method/12t for solving linear systems of equations. The 
details depend somewhat on the Hamiltonian, and it would take us too far 
astray to discuss how G is sampled. For Coulomb systems, with which we 
are primarily concerned, such a sampling of G can be done rather 
efficiently.(~l'13) 

Equation (2) is iterated and the third generation is sampled from the 
second generation and so forth until the probability distribution of points 
has converged to its limiting distribution f*(R),  which can easily be shown 
to be 

1 
f * (R)  = ~ O(R) r where Z = f dR O(R) r (3) 

A certain number of generations in the beginning of the run are thrown 
away, just as in classical simulations, since they may contain a memory of 
the initial distribution. Usually the number to be thrown away is judged 
empirically, and averages are taken over points in the remaining 
generations. 

In the limit of small time steps, the Green's function G simplifies to 
such an extent that one can write down the explicit method of sampling the 
new points. This method (5'9~ is called Diffusion Monte Carlo (DMC). Let 
"time" (which corresponds to imaginary physical time) be defined as 
T= k �9 t, where k is the generation number. Then f (R,  T) satisfies the par- 
tial differential equation (5) 

h2 h 2 
(R, T) = - EEL -- Er] f +  ~m V2j'- m ~'[J~ log t) ] (4) 

where EL(R)=O- IH~  is the local energy of the trial function. Thus 
equation can be interpreted directly as a stochastic process. The evolution 
of f is a result of the three terms on the right-hand side, namely: (a) 
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branching with an average branching factor of exp{ - t [E r (R  ) -Er]};  (b) 
random diffusion with a mean squared displacement between a point and 
its descendants in the next generation being th2/m per coordinate; (c) drift 
due to the trial function with a value equal to th2~ log(0)/m. The error 
analysis will apply equally to the two methods since they are closely 
related. DMC is simpler to program and has less branching; however, 
GFMC rigoursly correct, even for finite timesteps. 

There are two ways of calculating the ground state energy with 
GFMC. The generational estimate of the energy is obtained by determining 
the value of the trial energy, Er, for which the population as a function of 
generation is constant. If the population becomes too large, ET is made 
smaller; if the population diminishes, E T is increased. The loeal energy 
estimate e of the energy is the average value of the local energy over the 
final distribution f*. Since H is hermitian, the mean value of e is the 
ground state energy 

P j = l  

where P is the total number of points belonging to the equilibrated 
generations. 

Note that, as the trial function approaches an eigenstate of H, the 
local energy will approach a constant and the statistical error will 
approach zero. This is the zero variance property of quantum Monte Carlo 
and it exists not only for the energy, but also for specific wave function 
values. (14) The growth estimator for the ground state energy also has this 
property but only if the Green's function G is known explicitly and can be 
sampled directly. Usually this is not the case. Hence, our analysis will be 
confined to the local energy estimator. 

Now if the points Rk of (5) were sampled independently from f* ,  the 
variance of e would simply be 

1 -eg} V~= ( (e -  Eo)2}=~ { l f dR r )2/~O (6) 

But, in fact, the points are not sampled independently; they are correlated 
because the descendants of a given point are nearby. If the particle interac- 
tions are strong, as is usually the case when one resorts to a Monte Carlo 
calculation, the time step t will be chosen small to keep the branching fac- 
tors reasonable, and in that limit the mean squared displacement between a 
point and its descendants in the next generation is 3NhZt/m. Hence, points 
in successive generations are close together and their local energies are 
highly correlated. It is this correlation which we want to estimate. 
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First, let us briefly discuss the effect of fermi statistics on the G F M C  
algorithm. The fermion problem has been discussed elsewhere. (15) For the 
purpose of determining statistical error we will simply convert a fermion 
system, or indeed any excited state problem, to a ground state one by using 
the fixed-node method. Let us suppose that the trial function is antisym- 
metric and let us change the Hamiltonian by making the potential energy 
infinite whenever the trial function is less than or equal to zero. This makes 
the nodes of the ground state of this new problem equal to those of the 
trial function. Such a change is very easy to implement in the algorithm. 
One simply makes the branching factor equal to zero for those steps where 
the sign of the trial function changes. One can show that the energy 
obtained with this new potential will give an upper bound to the exact fer- 
mion energy and will equal it if the nodes of r have been chosen to coin- 
cide with the exact nodal surfaces. In fact, it is found that, for reasonable 
choices of r the energies and other expectation values are rather accurate. 

One can sometimes obtain exact fermion energies by introducing 
negatively signed random walks. This is called the release-node or 
transient-estimate method (15~ but is only successful if the nodes of the trial 
function are sufficiently close to the exact nodes. The error analysis for 
those methods is more complex, and in fact those methods will always have 
larger errors per step since the cancellation of contributions from positive 
and negative walks always decreases the efficiency. So our estimates, below, 
will reflect the best one can hope to achieve with GFMC. 

3. T H E  V A R I A N C E  OF G R E E N ' S  F U N C T I O N  M O N T E  C A R L O  

In any random walk method--for example, Metropolis Monte 
Carlo--there is serial correlation between steps of the walk. In principle, 
for each quantity one is calculating one needs to determine the correlations 
in that quantity to ensure that the random walk is long enough to get 
reliable answers and to determine the error bars on the final results. A 
simple way to calculate the error bars without explicitly determining 
correlation times is to divide the total random walk into a number of 
separate "blocks," determine the block averages for all expectation values, 
and to find an estimate for the error bars on the total mean from the dis- 
persion of the block averages. If the lengths of the blocks are longer than 
the correlation times, the error estimates will be reliable. One can judge 
this by varying the number of blocks to see if the error bars change. We 
wish, however, to develop an a priori estimate of the error which will be 
useful in determining what sort of problems can be attacked with GFMC. 
This is not to imply that the usual method of determining errors should not 
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be followed. In arriving at an a priori estimate, several uncontrolled 
approximations are made, so this estimate is not necesarily correct, while 
the empirical estimate is correct, with probability one, given a long enough 
random walk. In any case, a discrepancy between the two ways of 
calculating errors will perhaps give valuable information about ways of 
improving the trial function or the random walk procedure. 

To begin, one can assume, without loss of generality, that the ground 
state energy is zero; this simplifies the equations. From (5) the variance 
of the local energy estimate about the exact ground state energy (not the 
sample mean) is 

1 e 
V=-fi7 ~ (EL(Rj)EL(Rk)) (7) 

j , k =  l 

where we have a total of P points in the "equilibrated" random walk, 
ordered according to generations. This equation can be rewritten as 

1 2 
V = ~  (EL(Rk) 2) + ~  y~ (EL(Rs) EL(Rk)) (8) 

j < k  

The first term is recognized as V1 from (6) and we will define the second 
term as V2. 

Here we make a very important assumption. Let d(j) be the set of all 
points k, which are descendants, not only in the next generation but in all 
following ones, from the point j. In the second term of (8) we will ignore all 
correlation between the point j and points k not in d(j). Then 

2 
V2=~- ~ ~ (EL(Rj)EL(Rk)) (9) 

k ~ d( j )  
J 

This approximation gives a lower bound to the actual variance since 
"cousin correlation" is being neglected, i.e., correlation between two points, 
both of which are derived from a third point, but neither descended from 
the other one. This assumption could lead to a serious underestimate of the 
variance. Because of branching, some points are duplicates of others and 
we are neglecting their correlation. Calculation of such correlation is rather 
difficult in general because branching comes about not only from errors in 
the trial function, but also from difficulties of sampling the exact Green's 
function G. In diffusion Monte Carlo, where an approximation is made for 
the short time Green's function, all branching comes about from inade- 
quacies of the trial function, and it is possible that the cousin correlation 
could be evaluated. 

In addition to the neglect of the cousin correlation, we assume that 
there are enough generations of the equilibrated random walk so that all 
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correlated descendants of a given point j are eventually sampled. End effects 
due to the finite length of the random walk are being dropped since they 
are higher order in 1/P. Now the probability density of descendants of a 
point Ro is simply ~ 2 =  1 G"(R, Ro) where G m is the Green's function to the 
mth power, and m = 1 corresponds to descendants in the first generation, 
m = 2 to the second generation, etc. Hence 

V2=-~ dRdRoEL(R) Gm(R, Ro) EL(Ro)f*(Ro) 
1 

(lo) 

To evaluate this, G is expanded in the eigenfunctions of H(Ic~) with eigen- 
values E~), and the definitions o f f *  and EL are inserted. The ground state 
drops out of the summations since by assumption the Hamilitonian 
annhilates it. 

2 2 V2=pZ~>o(~kIH[c~) m = l  ~ (l+tE=)-m(c~fEr[O) (11) 

Then the summation over the generation number, m, is performed and 
after rearrangement that over the eigenfunctions collapses to give the 
simple result 

2 
V 2 = - - ~  f dR EL(R) ~2(R) (12) 

There are two types of integrals which contribute to the variance. If the 
time step is sufficiently large so that successive points are uncorrelated, the 
term which measures the fluctuations in the local energy V1 dominates. In 
most applications the time step is quite small; thus, V2, which is simply the 
local energy averaged over the square of the exact wave function, 
dominates. In both V~ and V2, 1/~p appears. In order to ensure that these 
integrals exist, 0 can vanish only when ~bHO does. This will be true in the 
case of a fixed node calculation, but care must be taken in the release-node 
or transient-estimate methods. 

The V2 integral can be further simplified by assuming that 0 is close to 
~b. A sufficient condition is 

1~9(R)-~b(R)] ~ q~(R) all R (13) 

Then, assuming now that ~ is normalized, expand 1/~ in terms of (O/q~ - 1) 
and to first order 

2 
(14) 
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where Ev is the variational energy of the trial function. Assuming the time 
step is small enough that Vt can be neglected, a lower bound to the 
variance of the energy in a GFMC calculation is 

v> 2Ev/(tP) (15) 

Although a number of approximations have been made in deriving 
this inequality, it has been empirically found, rather suprisingly, that (15) 
often holds within 20%, particularly if the trial function is reasonably 
accurate. The lower bound is quite accurate for the electron gas, molecular 
and metallic hydrogen, and small molecules composed of helium and 
hydrogen. Better agreement than this is not practically important since 
changes in programming and compliers often lead to improvements in 
computer times of this order. In any case, the estimate of (15) works very 
well to obtain an order-of-magnitude estimate of the amount of computer 
time needed for a given problem. 

The more general expression of (11) with V 2 from (14) is useful for 
determining the optimal trial function to put into a GFMC calculation. 
Using the "reweighting" method (1~ with a set of configurations derived 
from variational Monte Carlo parameters in the trial function are varied 
until the minimum value of V~ + V2 is obtained. Such trial functions often 
perform better than those which minimize the variational energy. 

4. I M P R O V E M E N T S  TO THE TRIAL F U N C T I O N  

In the GFMC algorithm, as usually implemented, the trial function 
and its first and second spatial derivatives are evaluated at each step of the 
random walk. The question then arises as to how accurate a trial function 
should be used. There is a trade-off between compact trial functions which 
can be quickly evaluated on the computer and accurate functions which 
have small variational energies and hence small variance per step of the 
random walk. Let us assume we have a sequence of trial functions 0 L with 
complexity L and that the computer time necessary to evaluate the trial 
function and its local energy is proportional to (1 +L/L~). The constant 
term comes from the computational work needed to advance the random 
walk in the limit of very compact trial functions and the linear term from 
the additional work needed as the complexity of the trial function increases. 
Further suppose that the variational energy decreases exponentially in L as 
Ev= exp(-L/L2). For example, Frankowski and Perkeris (16) have expan- 
ded the helium atom wavefunction in a polynomial in Hylleraas coor- 
dinates (rl + r2, rl - r2, and rlz where r~ and r2 are the electron positions) 
with the number of terms L being between 58 and 246, and find that 
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L2"-~ 20. The ability to achieve fast exponential convergence depends on 
picking the expansion functions and grouping them carefully. These two 
assumptions and (15) imply that the amount  of computer time needed to 
obtain a given variance will be proportional to (1 +L/L1)exp(-L/L2). 
This function has a maximum at L=L2--LI if L1 is less than L z. 
Otherwise it is a strictly decreasing function of L. For  the helium atom let 
us assume that L1 is roughly 10. (The amount  of time needed to compute 
10 terms in the Hylleraas expansion as well as the first and second 
derivatives of these terms is equal to the rest of the time needed to con- 
struct one new point in the random walk). Then the least efficient trial 
function has 10 terms and one should either choose L =  1 as the trial 
function or the largest L value available, which in this case is 246. The 
computer time necessary to obtain the coefficients of such an expansion 
have been neglected since it is trivial for helium. 

For  the next simplest atom, lithium, only much cruder trial functions 
are available. For  values of L(93 ,  and again assuming exponential con- 
vergence, the estimate of L 2 = 100 is obtained from Ref. (17). Again taking 
L~ = 10 we find that the least efficient trial function has 90 terms, the most 
accurate function available. For  lithium, unless more accurate functions are 
computed, the optimal trial function is the compact L = 1 function. It is 
reasonable to expect that this is a general feature; as the number of elec- 
trons increases, the constant L2 increases, and simple series expansions are 
less and less useful as trial functions. Of course such asymptotic arguments 
are not always relevant and computations with a variety of trial functions 
will give valuable checks on our assumptions. 

In fact, one of our assumptions is not quite correct. It is not necessary 
to evaluate the trial function at each step. One can take as a guiding 
function a very compact trial function and then evaluate the local energy 
with a much more accurate function, but very seldom, thus, in effect, 
setting to zero the V2 term in the variance. The difference between the two 
types of trial functions is accounted for with a weight equal to their ratio. 
For this scheme to work it is essential that there be a large overlap between 
the two functions. The reader is referred to ref. (18) for a practical example. 

In the case where one has a sequence of highly accurate trial functions 
one can ask a related question: How much computer time will be necessary 
for the Monte Carlo error bar to become less than the variational bound? 
According to the assumptions above, it will grow exponentially as 
L exp(L/L2). Since expansion methods are polynomial in L, Monte Carlo 
is not the best method for arriving at extremely precise results. This is 
simply because the variational upper bound is second order in the error of 
the trial function, while the G F M C  error bar is first order. Monte Carlo is 
useful because with it one can use much more realistic trial functions than 
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one can with other rigorous numerical techniques. Use of a pair product 
trial function for low Z elements gives over 90% of the correlation 
energy. ~ Such trial functions have not been used in chemistry because the 
integrals can only be done with Monte Carlo. After many years of research 
even expansions in Hylleraas coordinates have not been used for molecular 
systems. Molecular trial functions must be expanded in terms of Slater 
determinants of single particle orbitals. This expansion method, called con- 
figuration interaction, converges very slowly and is not thermodynamically 
correct. (19) Hence there are no variational techniques for many-electron 
systems that yield highly accurate results (say, more than 10 4 AU). In 
order to fully exploit the zero variance property of GFMC, adaptive 
methods must be developed where the results of the random walks them- 
selves are used to determine new, and much more accurate, trial functions, 
since traditional variational methods will not be able to find such functions. 

5. THE T H E R M O D Y N A M I C  L IMIT  

Let us now consider the computer time requirements of going to larger 
and larger systems of the same type. If the system is not near a zero tem- 
perature phase transition the variational energy will be proportional to the 
number of atoms, N. The time step, t, will have some dependence on the 
number of atoms since the branching factors W must be kept reasonable. If 
one doubles the number of atoms while keeping the time step the same, the 
mean squared branching factor will double. The dependence of the time 
step on the number of atoms can be determined in DMC since the 
branching by (4) is due only to the local energy. Expanding in powers of t, 
one finds ( W  2) = 1 + 2t2(EL(R) 2) + 0(t3). In this limit, the mean squared 
branching is proportional to V1. The expectation value of E~ is a ther- 
modynamic average and will scale as N. Hence in order to keep ( W z ) con- 
stant, the time step will go as N -~ In GFMC the branching is much 
larger than in DMC, but experiments with the electron gas have shown 
about the same relationship between branching, the time step, and the 
number of particles. 

A much more significant variation arises from the amount of computer 
time needed to perform each step of the random walk. For charged par- 
ticles, the evaluation of the coulomb potential involves N 2 operations. 
However, using the FFT algorithm it is possible to evaluate the potential 
in N log(N) operations, though such programs have not been implemented 
for quantum systems. For fermion systems, the calculation of the Slater 
determinant in the trial function involves N 3 operations. Iterative methods 
of finding the determinant in N 2 operations could be employed for suf- 
ficiently large systems. Furthermore, for an insulating system, sparse matrix 
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methods exist which will cut the number of operations further, since in 
those systems electrons on one atom only need to be antisymmetric to 
those on nearby atoms. To summarize, we will assume the computer time 
per step grows as N a, where 1 < a < 2. 

With the above assumptions, the computer time necessary to achieve a 
given error bar on the energy per  a tom will grow like N b where 
b =  1 + 0 . 5 + a - 2 ,  and, hence, 0 . 5 < b <  1.5. This is quite a respectable 
growth in computer time, a n d i s  only slightly worse than the situation in 
classical simulations (0 < b < 1 ) where it is now routine to compute proper- 
ties of systems of several thousand particles. In fact, processors are now 
being built to simulate up to a million classical particles. By comparision, 
the largest G F M C  simulations have contained 216 electrons and protons 
forming molecular hydrogen at zero degrees. (7) We may anticipate that 
G FMC  calculations will soon be performed for systems of several thousand 
particles. 

However, another set of problems requires much more precision. Sup- 
pose one wishes to calculate the band gap of hydrogen. The most elemen- 
tary method involves adding and subtracting a single electron and finding 
the effect on the total energy. To reach the thermodynamic limit for the 
band gap requires that the total energy be calculated to the same accuracy 
as the size of the system is increased. This implies that the exponent b 
above be increased by 2 and, thus, the computer time requirements grow as 
N b where 2.5 < b < 3.5. Of course, what one needs here are special methods 
for calculating relative energies such as have been developed for other 
Monte Carlo applications. Practical and exact energy difference methods 
are rather difficult to devise since the insertion of a charged fermion 
dramatically changes the time evolution of the random walk. 

6. H E A V Y  A T O  M S  

Finally, let us consider the computer time requirements of computing 
the ground state energy for an atom of charge Z, as Z is increased. The 
situation here is somewhat different than in the thermodynamic limit. First, 
the variational energy can be roughly estimated as being proportional to 
the correlation energy of an atom (i.e., the Har t ree-Fock energy minus the 
exact ground state energy). For  the range of Z < 2 0 ,  the correlation 
energy (2~ is proportional to Z 15. The time step t changes very significantly 
as Z is increased since the energy of the innermost electron increases as Z 2. 
So it is reasonable to expect the time step needed to follow the orbit of the 
ls electron will decrease as Z -2 and calculations for atoms up to Z =  10 
confirm this general behavior. Similarly, the difference between the boson 
and fermion energy, which controls the node crossing frequency, grows 
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roughly  as Z 2. The  above  discuss ion regard ing  the c o m p u t e r  t ime per  step 

is still appl icable ,  bu t  wi th in  a single a t o m  it seems unl ikely  tha t  sparse  
mat r ix  techniques  cou ld  be used to calcula te  the Slater  de t e rminan t  or  that  

Fou r i e r  t r ans form techniques cou ld  be useful in de te rmin ing  the po ten t ia l  
energy. Thus,  at  best, we expect  the c o m p u t e r  t ime requi rements  per  s tep to 
grow as Z 2. Pu t t ing  these var ious  factors  together ,  the c o m p u t e r  t ime 

necessary to reach a given abso lu te  e r ror  in the g r o u n d  s tate  energy grows 
as Z 55. I t  is this s t rong  Z dependence ,  more  than  the difficulties with fermi 
statistics,  which has  p reven ted  G F M C  from being used for a toms  with 

Z > 10. There  is a need for me thods  which ei ther  d r o p  the i nne rmos t  elec- 
t rons  by the use of p seudopo ten t i a l s  or  which c ompu te  relat ive energies in 
such a way tha t  i nne rmos t  e lectrons do  not  d o m i n a t e  the calculat ion.  
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